

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

www.myprogramminglab.com

This page intentionally left blank

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Building Java Programs
A Back to Basics Approach

Stuart Reges | Marty Stepp
University of Washington

Third Edition

Editorial Director, ECS: Marcia Horton
Executive Editor: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Senior Marketing Coordinator: Kathryn Ferranti
Director of Production: Erin Gregg
Senior Managing Editor: Scott Disanno
Production Project Manager: Kayla Smith-Tarbox
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemellaro

Cover Designer: Joyce Wells
Manager, Rights and Permissions: Michael Joyce
Text Permission Coordinator: Jackie Bates, GEX
Cover Image: Dimitar Todorov/Alamy
Media Project Manager: Renata Butera
Full-Service Project Management: Mohinder Singh/

Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Binder: Edwards Brothers
Cover Printer: Edwards Brothers
Text Font: Times

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
the appropriate page within text and on page 1145.

Copyright © 2014, 2011, 2008 Pearson Education, Inc., publishing as Addison-Wesley. All rights reserved. Printed in
the United States of America. This publication is protected by Copyright, and permission should be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work,
please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value. They have been
tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or
representations, nor does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Reges, Stuart.

Building Java programs : a back to basics approach / Stuart Reges, Marty
Stepp, University of Washington.—Third edition.

pages cm
ISBN-13: 978-0-13-336090-5
ISBN-10: 0-13-336090-3
1. Java (Computer program language) I. Stepp, Martin. II. Title.
QA76.73.J38R447 2014
005.13’3—dc23

2012045404

10 9 8 7 6 5 4 3 2 1

ISBN 13: 978-0-13-336090-5
ISBN 10: 0-13-336090-3

Preface

The newly revised Building Java Programs textbook is designed for use in a two-
course introduction to computer science. We received such positive feedback on the
new chapters that we added in the second edition that we have gone even further to
make this book useful for both the first and second course in computer science. We
have class-tested it with thousands of undergraduates at the University of Washington,
most of whom were not computer science majors.

Introductory computer science courses have a long history at many universities of
being “killer” courses with high failure rates. But as Douglas Adams says in The
Hitchhiker’s Guide to the Galaxy, “Don’t panic.” Students can master this material if
they can learn it gradually. The introductory courses at the University of Washington
are experiencing record enrollments, and other schools that have adopted our text-
book report that students are succeeding with our approach.

Since the publication of our first two editions, there has been a movement toward
the “objects later” approach that we have championed (as opposed to the “objects
early” approach). We know from years of experience that a broad range of scientists,
engineers, and others can learn how to program in a procedural manner. Once we
have built a solid foundation of procedural techniques, we turn to object-oriented
programming. By the end of the course, students will have learned about both styles
of programming.

Here are some of the changes that we have made in the third edition:

• Two new chapters. We have created new chapters that extend the coverage of
the book, using material that we present in our second course in computer sci-
ence. Chapter 14 explores programming with stacks and queues. Chapter 18
examines the implementation of hash tables and heaps. These expand on
Chapters 15–17 added in the second edition that discuss implementation of col-
lection classes using arrays, linked lists, and binary trees.

• New section on recursive backtracking. Backtracking is a powerful technique
for exploring a set of possibilities for solving a problem. Chapter 12 now has a
section on backtracking and examines several problems in detail, including the
8 Queens problem and Sudoku.

• Expanded self-checks and programming exercises. We have significantly
increased the number and quality of self-check exercises and programming exer-
cises incorporating new problems in each chapter. There are now roughly fifty
total problems and exercises per chapter, all of which have been class-tested
with real students and have solutions provided for instructors on our web site.

v

vi Preface

The following features have been retained from the first edition:

• Focus on problem solving. Many textbooks focus on language details when
they introduce new constructs. We focus instead on problem solving. What
new problems can be solved with each construct? What pitfalls are novices
likely to encounter along the way? What are the most common ways to use a
new construct?

• Emphasis on algorithmic thinking. Our procedural approach allows us to
emphasize algorithmic problem solving: breaking a large problem into smaller
problems, using pseudocode to refine an algorithm, and grappling with the chal-
lenge of expressing a large program algorithmically.

• Layered approach. Programming in Java involves many concepts that are diffi-
cult to learn all at once. Teaching Java to a novice is like trying to build a house
of cards. Each new card has to be placed carefully. If the process is rushed and
you try to place too many cards at once, the entire structure collapses. We teach
new concepts gradually, layer by layer, allowing students to expand their under-
standing at a manageable pace.

• Case studies. We end most chapters with a significant case study that shows
students how to develop a complex program in stages and how to test it as it
is being developed. This structure allows us to demonstrate each new pro-
gramming construct in a rich context that can’t be achieved with short code
examples. Several of the case studies were expanded and improved in the
second edition.

Layers and Dependencies

Many introductory computer science books are language-oriented, but the early chap-
ters of our book are layered. For example, Java has many control structures (including
for loops, while loops, and if/else statements), and many books include all of
these control structures in a single chapter. While that might make sense to someone
who already knows how to program, it can be overwhelming for a novice who is
learning how to program. We find that it is much more effective to spread these control
structures into different chapters so that students learn one structure at a time rather
than trying to learn them all at once.

Preface vii

Chapters 1–6 are designed to be worked through in order, with greater flexibil-
ity of study then beginning in Chapter 7. Chapter 6 may be skipped, although the
case study in Chapter 7 involves reading from a file, a topic that is covered in
Chapter 6.

The following table shows how the layered approach works in the first six
chapters:

The Layers

Programming

Chapter Control flow Data techniques Input/Output

1 methods String literals procedural println, print

decomposition

2 definite loops (for) variables local variables

expressions class constants

int, double pseudocode

3 return values using objects parameters console input

graphics (optional)

4 conditional char pre/post conditions printf

(if/else) throwing exceptions

5 indefinite loops boolean assertions

(while) robust programs

6 Scanner token-based processing file input/output

line-based processing

viii Preface

Supplements

Answers to all self-check problems appear on our web site at http://www.building
javaprograms.com/ and are accessible to anyone. Our web site also has the following
additional resources available for students:

• Online-only supplemental chapters, such as a chapter on creating Graphical
User Interfaces

The following is a dependency chart for the book:

Chapters 1–6
Programming Fundamentals

Chapter 9
Inheritance and Interfaces

Chapter 13
Searching and Sorting

Chapter 18
Advanced Data Structures

Chapter 10
ArrayLists

Chapter 15
Implementing a Collection Class

Chapter 14
Stacks and Queues

Chapter 12
Recursion

Chapter 8
Classes

Chapter 7
Arrays

Chapter 11
Java Collections Framework

Chapter 16
Linked Lists

Chapter 17
Binary Trees

http://www.buildingjavaprograms.com/
http://www.buildingjavaprograms.com/

Preface ix

• Source code and data files for all case studies and other complete program
examples

• The DrawingPanel class used in the optional graphics Supplement 3G

Instructors can access the following resources from our web site at http://www.
buildingjavaprograms.com/:

• PowerPoint slides suitable for lectures

• Solutions to exercises and programming projects, along with homework specifi-
cation documents for many projects

• Sample Exams and solution keys

• Additional Lab Exercises and Programming Exercises with solution keys

• Closed Lab creation tools to produce lab handouts with the instructor's choice
of problems integrated with the textbook

To access protected instructor resources, contact us at authors@buildingjavapro
grams.com. The same materials are also available at http://www.pearsonhighered.
com/regesstepp/. To receive a password for this site or to ask other questions related
to resources, contact your Pearson sales representative.

MyProgrammingLab

MyProgrammingLab is an online practice and assessment tool that helps students
fully grasp the logic, semantics, and syntax of programming. Through practice exer-
cises and immediate, personalized feedback, MyProgrammingLab improves the pro-
gramming competence of beginning students who often struggle with basic concepts
and paradigms of popular high-level programming languages. A self-study and
homework tool, the MyProgrammingLab course consists of hundreds of small prac-
tice exercises organized around the structure of this textbook. For students, the sys-
tem automatically detects errors in the logic and syntax of code submissions and
offers targeted hints that enable students to figure out what went wrong—and why.
For instructors, a comprehensive gradebook tracks correct and incorrect answers and
stores the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to adopt
MyProgrammingLab for your course, visit www.myprogramminglab.com.

VideoNotes

We have recorded a series of instructional videos to accompany the textbook. They
are available at http://www.pearsonhighered.com/regesstepp. Roughly 3–4 videos are
posted for each chapter. An icon in the margin of the page indicates when a
VideoNote is available for a given topic. In each video, we spend 5–15 minutes walking

VideoNote

http://www.buildingjavaprograms.com/
http://www.buildingjavaprograms.com/
http://www.pearsonhighered.com/regesstepp/
http://www.pearsonhighered.com/regesstepp/
www.myprogramminglab.com
http://www.pearsonhighered.com/regesstepp

x Preface

through a particular concept or problem, talking about the challenges and methods nec-
essary to solve it. These videos make a good supplement to the instruction given in
lecture classes and in the textbook. Your new copy of the textbook has an access code
that will allow you to view the videos.

Acknowledgments

First, we would like to thank the many colleagues, students, and teaching assistants
who have used and commented on early drafts of this text. We could not have written
this book without their input. Special thanks go to Hélène Martin, who pored over
early versions of these chapters to find errors and to identify rough patches that needed
work. We would also like to thank instructor Benson Limketkai for spending many
hours performing a technical proofread of the second edition.

Second, we would like to thank the talented pool of reviewers who guided us in
the process of creating this textbook:

• Greg Anderson, Weber State University

• Delroy A. Brinkerhoff, Weber State University

• Ed Brunjes, Miramar Community College

• Tom Capaul, Eastern Washington University

• Tom Cortina, Carnegie Mellon University

• Charles Dierbach, Towson University

• H.E. Dunsmore, Purdue University

• Michael Eckmann, Skidmore College

• Mary Anne Egan, Siena College

• Leonard J. Garrett, Temple University

• Ahmad Ghafarian, North Georgia College & State University

• Raj Gill, Anne Arundel Community College

• Michael Hostetler, Park University

• David Hovemeyer, York College of Pennsylvania

• Chenglie Hu, Carroll College

• Philip Isenhour, Virginia Polytechnic Institute

• Andree Jacobson, University of New Mexico

• David C. Kamper, Sr., Northeastern Illinois University

• Simon G.M. Koo, University of San Diego

• Evan Korth, New York University

• Joan Krone, Denison University

• John H.E.F. Lasseter, Fairfield University

Preface xi

• Eric Matson, Wright State University

• Kathryn S. McKinley, University of Texas, Austin

• Jerry Mead, Bucknell University

• George Medelinskas, Northern Essex Community College

• John Neitzke, Truman State University

• Dale E. Parson, Kutztown University

• Richard E. Pattis, Carnegie Mellon University

• Frederick Pratter, Eastern Oregon University

• Roger Priebe, University of Texas, Austin

• Dehu Qi, Lamar University

• John Rager, Amherst College

• Amala V.S. Rajan, Middlesex University

• Craig Reinhart, California Lutheran University

• Mike Scott, University of Texas, Austin

• Alexa Sharp, Oberlin College

• Tom Stokke, University of North Dakota

• Leigh Ann Sudol, Fox Lane High School

• Ronald F. Taylor, Wright State University

• Andy Ray Terrel, University of Chicago

• Scott Thede, DePauw University

• Megan Thomas, California State University, Stanislaus

• Dwight Tuinstra, SUNY Potsdam

• Jeannie Turner, Sayre School

• Tammy VanDeGrift, University of Portland

• Thomas John VanDrunen, Wheaton College

• Neal R. Wagner, University of Texas, San Antonio

• Jiangping Wang, Webster University

• Yang Wang, Missouri State University

• Stephen Weiss, University of North Carolina at Chapel Hill

• Laurie Werner, Miami University

• Dianna Xu, Bryn Mawr College

• Carol Zander, University of Washington, Bothell

We would also like to thank the dedicated University of Washington teaching
assistants: Robert Baxter, Will Beebe, Whitaker Brand, Leslie Ferguson, Lisa Fiedler,
Jason Ganzhorn, Brad Goring, Stefanie Hatcher, Jared Jones, Roy McElmurry, Aryan

Naraghi, Allison Obourn, Coral Peterson, Jeff Prouty, Stephanie Smallman, Eric
Spishak, Kimberly Todd, and Brian Walker.

Finally, we would like to thank the great staff at Addison-Wesley who helped pro-
duce the book. Michelle Brown, Jeff Holcomb, Maurene Goo, Patty Mahtani, Nancy
Kotary, and Kathleen Kenny did great work preparing the first edition. Our copy edi-
tors and the staff of Aptara Corp, including Heather Sisan, Brian Baker, Brendan
Short, and Rachel Head, caught many errors and improved the quality of the writing.
Marilyn Lloyd and Chelsea Bell served well as project manager and editorial assis-
tant, respectively. For their help with the third edition we would like to thank Kayla
Smith-Tarbox, Production Project Manager, and Jenah Blitz-Stoehr, Computer
Science Editorial Assistant. Mohinder Singh and the staff at Aptara, Inc., were also
very helpful in the final production of the third edition. Special thanks go to our edi-
tor Matt Goldstein, who has believed in the concept of our book from day one. We
couldn’t have finished this job without all of their support.

Stuart Reges

Marty Stepp

xii Preface

xiii

LOCATION OF VIDEO NOTES IN THE TEXT
www.pearsonhighered.com/regesstepp

Chapter 1 Pages 31, 40

Chapter 2 Pages 65, 74, 89, 97, 110

Chapter 3 Pages 140, 155, 160, 166

Chapter 3G Pages 195, 211

Chapter 4 Pages 239, 247, 274

Chapter 5 Pages 320, 323, 325, 329, 352

Chapter 6 Pages 392, 405, 419

Chapter 7 Pages 454, 461, 478, 495

Chapter 8 Pages 521, 533, 541, 554

Chapter 9 Pages 583, 596, 612

Chapter 10 Pages 658, 663, 672

Chapter 11 Pages 702, 715, 723

Chapter 12 Pages 750, 758, 795

Chapter 13 Pages 820, 823, 829

Chapter 14 Pages 875, 882

Chapter 15 Pages 916, 922, 926

Chapter 16 Pages 958, 965, 978

Chapter 17 Pages 1023, 1024, 1034

Chapter 18 Pages 1059, 1078

VideoNote

www.pearsonhighered.com/regesstepp

This page intentionally left blank

Brief Contents

Chapter 1 Introduction to Java Programming 1

Chapter 2 Primitive Data and Definite Loops 63

Chapter 3 Introduction to Parameters and Objects 136

Supplement 3G Graphics (Optional) 194

Chapter 4 Conditional Execution 234

Chapter 5 Program Logic and Indefinite Loops 311

Chapter 6 File Processing 383

Chapter 7 Arrays 439

Chapter 8 Classes 516

Chapter 9 Inheritance and Interfaces 573

Chapter 10 ArrayLists 648

Chapter 11 Java Collections Framework 701

Chapter 12 Recursion 740

Chapter 13 Searching and Sorting 818

Chapter 14 Stacks and Queues 870

Chapter 15 Implementing a Collection Class 908

Chapter 16 Linked Lists 951

Chapter 17 Binary Trees 1003

Chapter 18 Advanced Data Structures 1057

Appendix A Java Summary 1093

Appendix B The Java API Specification and Javadoc Comments 1108

Appendix C Additional Java Syntax 1114

xv

This page intentionally left blank

Contents

Chapter 1 Introduction to Java Programming 1

1.1 Basic Computing Concepts 2
Why Programming? 2
Hardware and Software 3
The Digital Realm 4
The Process of Programming 6
Why Java? 7
The Java Programming Environment 8

1.2 And Now—Java 10
String Literals (Strings) 14
System.out.println 15
Escape Sequences 15
print versus println 17
Identifiers and Keywords 18
A Complex Example: DrawFigures1 20
Comments and Readability 21

1.3 Program Errors 24
Syntax Errors 24
Logic Errors (Bugs) 28

1.4 Procedural Decomposition 28
Static Methods 31
Flow of Control 34
Methods That Call Other Methods 36
An Example Runtime Error 39

1.5 Case Study: DrawFigures 40
Structured Version 41
Final Version without Redundancy 43
Analysis of Flow of Execution 44

Chapter 2 Primitive Data and Definite Loops 63

2.1 Basic Data Concepts 64
Primitive Types 64

xvii

Expressions 65
Literals 67
Arithmetic Operators 68
Precedence 70
Mixing Types and Casting 73

2.2 Variables 74
Assignment/Declaration Variations 79
String Concatenation 82
Increment/Decrement Operators 84
Variables and Mixing Types 87

2.3 The for Loop 89
Tracing for Loops 91
for Loop Patterns 95
Nested for Loops 97

2.4 Managing Complexity 99
Scope 99
Pseudocode 105
Class Constants 108

2.5 Case Study: Hourglass Figure 110
Problem Decomposition and Pseudocode 111
Initial Structured Version 113
Adding a Class Constant 114
Further Variations 117

Chapter 3 Introduction to Parameters
and Objects 136

3.1 Parameters 137
The Mechanics of Parameters 140
Limitations of Parameters 144
Multiple Parameters 147
Parameters versus Constants 150
Overloading of Methods 150

3.2 Methods That Return Values 151
The Math Class 152
Defining Methods That Return Values 155

3.3 Using Objects 159
String Objects 160
Interactive Programs and Scanner Objects 166
Sample Interactive Program 169

xviii Contents

3.4 Case Study: Projectile Trajectory 172
Unstructured Solution 176
Structured Solution 178

Supplement 3G Graphics (Optional) 194

3G.1 Introduction to Graphics 195
DrawingPanel 195
Drawing Lines and Shapes 196
Colors 201
Drawing with Loops 204
Text and Fonts 208

3G.2 Procedural Decomposition with Graphics 211
A Larger Example: DrawDiamonds 212

3G.3 Case Study: Pyramids 215
Unstructured Partial Solution 216
Generalizing the Drawing of Pyramids 218
Complete Structured Solution 219

Chapter 4 Conditional Execution 234

4.1 if/else Statements 235
Relational Operators 237
Nested if/else Statements 239
Object Equality 246
Factoring if/else Statements 247
Testing Multiple Conditions 249

4.2 Cumulative Algorithms 250
Cumulative Sum 250
Min/Max Loops 252
Cumulative Sum with if 256
Roundoff Errors 258

4.3 Text Processing 261
The char Type 261
char versus int 262
Cumulative Text Algorithms 263
System.out.printf 265

4.4 Methods with Conditional Execution 270
Preconditions and Postconditions 270
Throwing Exceptions 270

Contents xix

Revisiting Return Values 274
Reasoning about Paths 279

4.5 Case Study: Body Mass Index 281
One-Person Unstructured Solution 282
Two-Person Unstructured Solution 285
Two-Person Structured Solution 287
Procedural Design Heuristics 291

Chapter 5 Program Logic and Indefinite Loops 311

5.1 The while Loop 312
A Loop to Find the Smallest Divisor 313
Random Numbers 316
Simulations 320
do/while Loop 321

5.2 Fencepost Algorithms 323
Sentinel Loops 325
Fencepost with if 326

5.3 The booleanType 329
Logical Operators 331
Short-Circuited Evaluation 334
boolean Variables and Flags 338
Boolean Zen 340
Negating Boolean Expressions 343

5.4 User Errors 344
Scanner Lookahead 345
Handling User Errors 347

5.5 Assertions and Program Logic 349
Reasoning about Assertions 351
A Detailed Assertions Example 352

5.6 Case Study: NumberGuess 357
Initial Version without Hinting 357
Randomized Version with Hinting 359
Final Robust Version 363

Chapter 6 File Processing 383

6.1 File-Reading Basics 384
Data, Data Everywhere 384

xx Contents

Files and File Objects 384
Reading a File with a Scanner 387

6.2 Details of Token-Based Processing 392
Structure of Files and Consuming Input 394
Scanner Parameters 399
Paths and Directories 400
A More Complex Input File 403

6.3 Line-Based Processing 405
String Scanners and Line/Token Combinations 406

6.4 Advanced File Processing 411
Output Files with PrintStream 411
Guaranteeing That Files Can Be Read 416

6.5 Case Study: Zip Code Lookup 419

Chapter 7 Arrays 439

7.1 Array Basics 440
Constructing and Traversing an Array 440
Accessing an Array 444
A Complete Array Program 447
Random Access 451
Arrays and Methods 454
The For-Each Loop 457
Initializing Arrays 459
The Arrays Class 460

7.2 Array-Traversal Algorithms 461
Printing an Array 462
Searching and Replacing 464
Testing for Equality 467
Reversing an Array 468
String Traversal Algorithms 473

7.3 Reference Semantics 474
Multiple Objects 476

7.4 Advanced Array Techniques 478
Shifting Values in an Array 478
Arrays of Objects 483
Command-Line Arguments 484
Nested Loop Algorithms 485

Contents xxi

7.5 Multidimensional Arrays 487
Rectangular Two-Dimensional Arrays 487
Jagged Arrays 489

7.6 Case Study: Benford’s Law 493
Tallying Values 495
Completing the Program 499

Chapter 8 Classes 516

8.1 Object-Oriented Programming 517
Classes and Objects 518
Point Objects 520

8.2 Object State and Behavior 521
Object State: Fields 522
Object Behavior: Methods 524
The Implicit Parameter 527
Mutators and Accessors 529
The toString Method 531

8.3 Object Initialization: Constructors 533
The Keyword this 538
Multiple Constructors 540

8.4 Encapsulation 541
Private Fields 542
Class Invariants 548
Changing Internal Implementations 552

8.5 Case Study: Designing a Stock Class 554
Object-Oriented Design Heuristics 555
Stock Fields and Method Headers 557
Stock Method and Constructor Implementation 559

Chapter 9 Inheritance and Interfaces 573

9.1 Inheritance Basics 574
Nonprogramming Hierarchies 575
Extending a Class 577
Overriding Methods 581

9.2 Interacting with the Superclass 583
Calling Overridden Methods 583

xxii Contents

Accessing Inherited Fields 584
Calling a Superclass’s Constructor 586
DividendStock Behavior 588
The Object Class 590
The equals Method 591
The instanceof Keyword 594

9.3 Polymorphism 596
Polymorphism Mechanics 599
Interpreting Inheritance Code 601
Interpreting Complex Calls 603

9.4 Inheritance and Design 606
A Misuse of Inheritance 606
Is-a Versus Has-a Relationships 609
Graphics2D 610

9.5 Interfaces 612
An Interface for Shapes 613
Implementing an Interface 615
Benefits of Interfaces 618

9.6 Case Study: Financial Class Hierarchy 620
Designing the Classes 621
Redundant Implementation 625
Abstract Classes 628

Chapter 10 ArrayLists 648

10.1 ArrayLists 649
Basic ArrayList Operations 650
ArrayList Searching Methods 653
A Complete ArrayList Program 656
Adding to and Removing from an ArrayList 658
Using the For-Each Loop with ArrayLists 662
Wrapper Classes 663

10.2 The Comparable Interface 666
Natural Ordering and compareTo 668
Implementing the Comparable Interface 672

10.3 Case Study: Vocabulary Comparison 678
Some Efficiency Considerations 678
Version 1: Compute Vocabulary 681
Version 2: Compute Overlap 684
Version 3: Complete Program 689

Contents xxiii

Chapter 11 Java Collections Framework 701

11.1 Lists 702
Collections 702
LinkedList versus ArrayList 703
Iterators 706
Abstract Data Types (ADTs) 709
LinkedList Case Study: Sieve 712

11.2 Sets 715
Set Concepts 716
TreeSet versus HashSet 718
Set Operations 719
Set Case Study: Lottery 721

11.3 Maps 723
Basic Map Operations 724
Map Views (keySet and values) 726
TreeMap versus HashMap 727
Map Case Study: WordCount 728
Collection Overview 731

Chapter 12 Recursion 740

12.1 Thinking Recursively 741
A Nonprogramming Example 741
An Iterative Solution Converted to Recursion 744
Structure of Recursive Solutions 746

12.2 A Better Example of Recursion 748
Mechanics of Recursion 750

12.3 Recursive Functions and Data 758
Integer Exponentiation 758
Greatest Common Divisor 761
Directory Crawler 767
Helper Methods 771

12.4 Recursive Graphics 774

12.5 Recursive Backtracking 778
A Simple Example: Traveling North/East 779
8 Queens Puzzle 784
Solving Sudoku Puzzles 791

xxiv Contents

12.6 Case Study: Prefix Evaluator 795
Infix, Prefix, and Postfix Notation 795
Evaluating Prefix Expressions 796
Complete Program 799

Chapter 13 Searching and Sorting 818

13.1 Searching and Sorting in the Java Class Libraries 819
Binary Search 820
Sorting 823
Shuffling 824
Custom Ordering with Comparators 825

13.2 Program Complexity 829
Empirical Analysis 832
Complexity Classes 836

13.3 Implementing Searching and Sorting Algorithms 838
Sequential Search 839
Binary Search 840
Recursive Binary Search 843
Searching Objects 846
Selection Sort 847

13.4 Case Study: Implementing Merge Sort 850
Splitting and Merging Arrays 851
Recursive Merge Sort 854
Complete Program 857

Chapter 14 Stacks and Queues 870

14.1 Stack/Queue Basics 871
Stack Concepts 871
Queue Concepts 874

14.2 Common Stack/Queue Operations 875
Transferring Between Stacks and Queues 877
Sum of a Queue 878
Sum of a Stack 879

14.3 Complex Stack/Queue Operations 882
Removing Values from a Queue 882
Comparing Two Stacks for Similarity 884

14.4 Case Study: Expression Evaluator 886
Splitting into Tokens 887
The Evaluator 892

Contents xxv

Chapter 15 Implementing a Collection Class 908

15.1 Simple ArrayIntList 909
Adding and Printing 909
Thinking about Encapsulation 915
Dealing with the Middle of the List 916
Another Constructor and a Constant 921
Preconditions and Postconditions 922

15.2 A More Complete ArrayIntList 926
Throwing Exceptions 926
Convenience Methods 929

15.3 Advanced Features 932
Resizing When Necessary 932
Adding an Iterator 934

15.4 ArrayList<E> 940

Chapter 16 Linked Lists 951

16.1 Working with Nodes 952
Constructing a List 953
List Basics 955
Manipulating Nodes 958
Traversing a List 961

16.2 A Linked List Class 965
Simple LinkedIntList 965
Appending add 967
The Middle of the List 971

16.3 A Complex List Operation 978
Inchworm Approach 983

16.4 An IntList Interface 984

16.5 LinkedList<E> 987
Linked List Variations 988
Linked List Iterators 991
Other Code Details 993

Chapter 17 Binary Trees 1003

17.1 Binary Tree Basics 1004
Node and Tree Classes 1007

xxvi Contents

17.2 Tree Traversals 1008
Constructing and Viewing a Tree 1014

17.3 Common Tree Operations 1023
Sum of a Tree 1023
Counting Levels 1024
Counting Leaves 1026

17.4 Binary Search Trees 1027
The Binary Search Tree Property 1028
Building a Binary Search Tree 1030
The Pattern x = change(x) 1034
Searching the Tree 1037
Binary Search Tree Complexity 1041

17.5 SearchTree<E> 1042

Chapter 18 Advanced Data Structures 1057

18.1 Hashing 1058
Array Set Implementations 1058
Hash Functions and Hash Tables 1059
Collisions 1061
Rehashing 1066
Hashing Non-Integer Data 1069
Hash Map Implementation 1072

18.2 Priority Queues and Heaps 1073
Priority Queues 1073
Introduction to Heaps 1075
Removing from a Heap 1077
Adding to a Heap 1078
Array Heap Implementation 1080
Heap Sort 1084

Appendix A Java Summary 1093

Appendix B The Java API Specification
and Javadoc Comments 1108

Appendix C Additional Java Syntax 1114

Index 1123

Credits 1145

Contents xxvii

This page intentionally left blank

Introduction

This chapter begins with a review of some basic terminology about com-
puters and computer programming. Many of these concepts will come up
in later chapters, so it will be useful to review them before we start delv-
ing into the details of how to program in Java.

We will begin our exploration of Java by looking at simple programs that
produce output.This discussion will allow us to explore many elements
that are common to all Java programs, while working with programs that
are fairly simple in structure.

After we have reviewed the basic elements of Java programs, we will
explore the technique of procedural decomposition by learning how to
break up a Java program into several methods. Using this technique, we
can break up complex tasks into smaller subtasks that are easier to man-
age and we can avoid redundancy in our program solutions.

Chapter1

1.1 Basic Computing Concepts
� Why Programming?
� Hardware and Software
� The Digital Realm
� The Process of Programming
� Why Java?
� The Java Programming

Environment

1.2 And Now—Java
� String Literals (Strings)
� System.out.println
� Escape Sequences
� print versus println
� Identifiers and Keywords
� A Complex Example:

DrawFigures1
� Comments and Readability

1.3 Program Errors
� Syntax Errors
� Logic Errors (Bugs)

1.4 Procedural Decomposition
� Static Methods
� Flow of Control
� Methods That Call Other

Methods
� An Example Runtime Error

1.5 Case Study:DrawFigures
� Structured Version
� Final Version without

Redundancy
� Analysis of Flow of Execution

Introduction to
Java Programming

1

2 Chapter 1 Introduction to Java Programming

1.1 Basic Computing Concepts

Computers are pervasive in our daily lives, and, thanks to the Internet, they give us
access to nearly limitless information. Some of this information is essential news,
like the headlines at cnn.com. Computers let us share photos with our families and
map directions to the nearest pizza place for dinner.

Lots of real-world problems are being solved by computers, some of which don’t
much resemble the one on your desk or lap. Computers allow us to sequence the
human genome and search for DNA patterns within it. Computers in recently manu-
factured cars monitor each vehicle’s status and motion. Digital music players such as
Apple’s iPod actually have computers inside their small casings. Even the Roomba
vacuum-cleaning robot houses a computer with complex instructions about how to
dodge furniture while cleaning your floors.

But what makes a computer a computer? Is a calculator a computer? Is a human
being with a paper and pencil a computer? The next several sections attempt to
address this question while introducing some basic terminology that will help prepare
you to study programming.

Why Programming?

At most universities, the first course in computer science is a programming course.
Many computer scientists are bothered by this because it leaves people with the
impression that computer science is programming. While it is true that many trained
computer scientists spend time programming, there is a lot more to the discipline. So
why do we study programming first?

A Stanford computer scientist named Don Knuth answers this question by saying
that the common thread for most computer scientists is that we all in some way work
with algorithms.

Algorithm

A step-by-step description of how to accomplish a task.

Knuth is an expert in algorithms, so he is naturally biased toward thinking of them
as the center of computer science. Still, he claims that what is most important is not
the algorithms themselves, but rather the thought process that computer scientists
employ to develop them. According to Knuth,

It has often been said that a person does not really understand something
until after teaching it to someone else. Actually a person does not really
understand something until after teaching it to a computer, i.e., expressing
it as an algorithm.1

1Knuth, Don. Selected Papers on Computer Science. Stanford, CA: Center for the Study of Language and
Information, 1996.

1.1 Basic Computing Concepts 3

Knuth is describing a thought process that is common to most of computer science,
which he refers to as algorithmic thinking. We study programming not because it
is the most important aspect of computer science, but because it is the best way to
explain the approach that computer scientists take to solving problems.

The concept of algorithms is helpful in understanding what a computer is and
what computer science is all about. The Merriam-Webster dictionary defines the
word “computer” as “one that computes.” Using that definition, all sorts of devices
qualify as computers, including calculators, GPS navigation systems, and children’s
toys like the Furby. Prior to the invention of electronic computers, it was common to
refer to humans as computers. The nineteenth-century mathematician Charles Peirce,
for example, was originally hired to work for the U.S. government as an “Assistant
Computer” because his job involved performing mathematical computations.

In a broad sense, then, the word “computer” can be applied to many devices. But
when computer scientists refer to a computer, we are usually thinking of a universal
computation device that can be programmed to execute any algorithm. Computer sci-
ence, then, is the study of computational devices and the study of computation itself,
including algorithms.

Algorithms are expressed as computer programs, and that is what this book is all
about. But before we look at how to program, it will be useful to review some basic
concepts about computers.

Hardware and Software

A computer is a machine that manipulates data and executes lists of instructions
known as programs.

Program

A list of instructions to be carried out by a computer.

One key feature that differentiates a computer from a simpler machine like a cal-
culator is its versatility. The same computer can perform many different tasks (play-
ing games, computing income taxes, connecting to other computers around the
world), depending on what program it is running at a given moment. A computer can
run not only the programs that exist on it currently, but also new programs that
haven’t even been written yet.

The physical components that make up a computer are collectively called
hardware. One of the most important pieces of hardware is the central processing
unit, or CPU. The CPU is the “brain” of the computer: It is what executes the instruc-
tions. Also important is the computer’s memory (often called random access memory,
or RAM, because the computer can access any part of that memory at any time). The
computer uses its memory to store programs that are being executed, along with their
data. RAM is limited in size and does not retain its contents when the computer is
turned off. Therefore, computers generally also use a hard disk as a larger permanent
storage area.

4 Chapter 1 Introduction to Java Programming

Computer programs are collectively called software. The primary piece of software
running on a computer is its operating system. An operating system provides an envi-
ronment in which many programs may be run at the same time; it also provides a
bridge between those programs, the hardware, and the user (the person using the com-
puter). The programs that run inside the operating system are often called applications.

When the user selects a program for the operating system to run (e.g., by double-
clicking the program’s icon on the desktop), several things happen: The instructions
for that program are loaded into the computer’s memory from the hard disk, the oper-
ating system allocates memory for that program to use, and the instructions to run the
program are fed from memory to the CPU and executed sequentially.

The Digital Realm

In the last section, we saw that a computer is a general-purpose device that can
be programmed. You will often hear people refer to modern computers as digital
computers because of the way they operate.

Digital

Based on numbers that increase in discrete increments, such as the integers
0, 1, 2, 3, etc.

Because computers are digital, everything that is stored on a computer is stored as a
sequence of integers. This includes every program and every piece of data. An MP3
file, for example, is simply a long sequence of integers that stores audio information.
Today we’re used to digital music, digital pictures, and digital movies, but in the
1940s, when the first computers were built, the idea of storing complex data in inte-
ger form was fairly unusual.

Not only are computers digital, storing all information as integers, but they are
also binary, which means they store integers as binary numbers.

Binary Number

A number composed of just 0s and 1s, also known as a base-2 number.

Humans generally work with decimal or base-10 numbers, which match our physi-
ology (10 fingers and 10 toes). However, when we were designing the first comput-
ers, we wanted systems that would be easy to create and very reliable. It turned out to
be simpler to build these systems on top of binary phenomena (e.g., a circuit being
open or closed) rather than having 10 different states that would have to be distin-
guished from one another (e.g., 10 different voltage levels).

From a mathematical point of view, you can store things just as easily using binary
numbers as you can using base-10 numbers. But since it is easier to construct a phys-
ical device that uses binary numbers, that’s what computers use.

This does mean, however, that people who aren’t used to computers find their con-
ventions unfamiliar. As a result, it is worth spending a little time reviewing how binary

1.1 Basic Computing Concepts 5

numbers work. To count with binary numbers, as with base-10 numbers, you start with 0
and count up, but you run out of digits much faster. So, counting in binary, you say

0

1

And already you’ve run out of digits. This is like reaching 9 when you count in
base-10. After you run out of digits, you carry over to the next digit. So, the next two
binary numbers are

10

11

And again, you’ve run out of digits. This is like reaching 99 in base-10. Again, you
carry over to the next digit to form the three-digit number 100. In binary, whenever
you see a series of ones, such as 111111, you know you’re just one away from the
digits all flipping to 0s with a 1 added in front, the same way that, in base-10, when
you see a number like 999999, you know that you are one away from all those digits
turning to 0s with a 1 added in front.

Table 1.1 shows how to count up to the base-10 number 8 using binary.

Table 1.1 Decimal vs. Binary

Decimal Binary

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

We can make several useful observations about binary numbers. Notice in the
table that the binary numbers 1, 10, 100, and 1000 are all perfect powers of 2 (20, 21,
22, 23). In the same way that in base-10 we talk about a ones digit, tens digit, hun-
dreds digit, and so on, we can think in binary of a ones digit, twos digit, fours digit,
eights digit, sixteens digit, and so on.

Computer scientists quickly found themselves needing to refer to the sizes of differ-
ent binary quantities, so they invented the term bit to refer to a single binary digit and the
term byte to refer to 8 bits. To talk about large amounts of memory, they invented the
terms “kilobytes” (KB), “megabytes” (MB), “gigabytes” (GB), and so on. Many people
think that these correspond to the metric system, where “kilo” means 1000, but that is
only approximately true. We use the fact that 210 is approximately equal to 1000 (it actu-
ally equals 1024). Table 1.2 shows some common units of memory storage:

6 Chapter 1 Introduction to Java Programming

Table 1.2 Units of Memory Storage

Measurement Power of 2 Actual Value Example

kilobyte (KB) 210 1,024 500-word paper (3 KB)

megabyte (MB) 220 1,048,576 typical book (1 MB) or song

(5 MB)

gigabyte (GB) 230 1,073,741,824 typical movie (4.7 GB)

terabyte (TB) 240 1,099,511,627,776 20 million books in the

Library of Congress (20 TB)

petabyte (PB) 250 1,125,899,906,842,624 10 billion photos on

Facebook (1.5 PB)

The Process of Programming

The word code describes program fragments (“these four lines of code”) or the act of
programming (“Let’s code this into Java”). Once a program has been written, you
can execute it.

Program Execution

The act of carrying out the instructions contained in a program.

The process of execution is often called running. This term can also be used as a
verb (“When my program runs it does something strange”) or as a noun (“The last
run of my program produced these results”).

A computer program is stored internally as a series of binary numbers known as
the machine language of the computer. In the early days, programmers entered num-
bers like these directly into the computer. Obviously, this is a tedious and confusing
way to program a computer, and we have invented all sorts of mechanisms to sim-
plify this process.

Modern programmers write in what are known as high-level programming lan-
guages, such as Java. Such programs cannot be run directly on a computer: They first
have to be translated into a different form by a special program known as a compiler.

Compiler

A program that translates a computer program written in one language
into an equivalent program in another language (often, but not always,
translating from a high-level language into machine language).

A compiler that translates directly into machine language creates a program that
can be executed directly on the computer, known as an executable. We refer to such
compilers as native compilers because they compile code to the lowest possible level
(the native machine language of the computer).

This approach works well when you know exactly what computer you want to use
to run your program. But what if you want to execute a program on many different

1.1 Basic Computing Concepts 7

computers? You’d need a compiler that generates different machine language output
for each of them. The designers of Java decided to use a different approach. They
cared a lot about their programs being able to run on many different computers,
because they wanted to create a language that worked well for the Web.

Instead of compiling into machine language, Java programs compile into what are
known as Java bytecodes. One set of bytecodes can execute on many different
machines. These bytecodes represent an intermediate level: They aren’t quite as high-
level as Java or as low-level as machine language. In fact, they are the machine lan-
guage of a theoretical computer known as the Java Virtual Machine (JVM).

Java Virtual Machine (JVM)

A theoretical computer whose machine language is the set of Java bytecodes.

A JVM isn’t an actual machine, but it’s similar to one. When we compile pro-
grams to this level, there isn’t much work remaining to turn the Java bytecodes into
actual machine instructions.

To actually execute a Java program, you need another program that will execute
the Java bytecodes. Such programs are known generically as Java runtimes, and the
standard environment distributed by Oracle Corporation is known as the Java
Runtime Environment (JRE).

Java Runtime

A program that executes compiled Java bytecodes.

Most people have Java runtimes on their computers, even if they don’t know about
them. For example, Apple’s Mac OS X includes a Java runtime, and many Windows
applications install a Java runtime.

Why Java?

When Sun Microsystems released Java in 1995, it published a document called a
“white paper” describing its new programming language. Perhaps the key sentence
from that paper is the following:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, dynamic
language.2

This sentence covers many of the reasons why Java is a good introductory pro-
gramming language. For starters, Java is reasonably simple for beginners to learn,
and it embraces object-oriented programming, a style of writing programs that has
been shown to be very successful for creating large and complex software systems.

2http://www.oracle.com/technetwork/java/langenv-140151.html

http://www.oracle.com/technetwork/java/langenv-140151.html

8 Chapter 1 Introduction to Java Programming

Java also includes a large amount of prewritten software that programmers can uti-
lize to enhance their programs. Such off-the-shelf software components are often
called libraries. For example, if you wish to write a program that connects to a site
on the Internet, Java contains a library to simplify the connection for you. Java con-
tains libraries to draw graphical user interfaces (GUIs), retrieve data from databases,
and perform complex mathematical computations, among many other things. These
libraries collectively are called the Java class libraries.

Java Class Libraries

The collection of preexisting Java code that provides solutions to common
programming problems.

The richness of the Java class libraries has been an extremely important factor in
the rise of Java as a popular language. The Java class libraries in version 1.7 include
over 4000 entries.

Another reason to use Java is that it has a vibrant programmer community.
Extensive online documentation and tutorials are available to help programmers learn
new skills. Many of these documents are written by Oracle, including an extensive
reference to the Java class libraries called the API Specification (API stands for
Application Programming Interface).

Java is extremely platform independent; unlike programs written in many other
languages, the same Java program can be executed on many different operating sys-
tems, such as Windows, Linux, and Mac OS X.

Java is used extensively for both research and business applications, which means
that a large number of programming jobs exist in the marketplace today for skilled
Java programmers. A sample Google search for the phrase “Java jobs” returned
around 180,000,000 hits at the time of this writing.

The Java Programming Environment

You must become familiar with your computer setup before you start programming.
Each computer provides a different environment for program development, but there
are some common elements that deserve comment. No matter what environment you
use, you will follow the same basic three steps:

1. Type in a program as a Java class.

2. Compile the program file.

3. Run the compiled version of the program.

The basic unit of storage on most computers is a file. Every file has a name. A file
name ends with an extension, which is the part of a file’s name that follows the
period. A file’s extension indicates the type of data contained in the file. For example,
files with the extension .doc are Microsoft Word documents, and files with the
extension .mp3 are MP3 audio files.

1.1 Basic Computing Concepts 9

The Java program files that you create must use the extension .java. When you
compile a Java program, the resulting Java bytecodes are stored in a file with the
same name and the extension .class.

Most Java programmers use what are known as Integrated Development
Environments, or IDEs, which provide an all-in-one environment for creating, edit-
ing, compiling, and executing program files. Some of the more popular choices for
introductory computer science classes are Eclipse, jGRASP, DrJava, BlueJ, and
TextPad. Your instructor will tell you what environment you should use.

Try typing the following simple program in your IDE (the line numbers are not
part of the program but are used as an aid):

1 public class Hello {

2 public static void main(String[] args) {

3 System.out.println("Hello, world!");

4 }

5 }

Don’t worry about the details of this program right now. We will explore those in
the next section.

Once you have created your program file, move to step 2 and compile it. The com-
mand to compile will be different in each development environment, but the process
is the same (typical commands are “compile” or “build”). If any errors are reported,
go back to the editor, fix them, and try to compile the program again. (We’ll discuss
errors in more detail later in this chapter.)

Once you have successfully compiled your program, you are ready to move to step
3, running the program. Again, the command to do this will differ from one environ-
ment to the next, but the process is similar (the typical command is “run”). The diagram
in Figure 1.1 summarizes the steps you would follow in creating a program called
Hello.java.

In some IDEs (most notably Eclipse), the first two steps are combined. In these
environments the process of compiling is more incremental; the compiler will warn
you about errors as you type in code. It is generally not necessary to formally ask
such an environment to compile your program because it is compiling as you type.

When your program is executed, it will typically interact with the user in some
way. The Hello.java program involves an onscreen window known as the console.

Console Window

A special text-only window in which Java programs interact with the user.

The console window is a classic interaction mechanism wherein the computer dis-
plays text on the screen and sometimes waits for the user to type responses. This is
known as console or terminal interaction. The text the computer prints to the console
window is known as the output of the program. Anything typed by the user is known
as the console input.

